[1]
Paschotta R, Nilsson J, Tropper A C, et al. Ytterbium-doped fiber amplifiers[J]. IEEE Journal of Quantum Electronics, 1997, 33(7): 1049-1056. doi: 10.1109/3.594865
[2]
Tünnermann A, Schreiber T, Röser F, et al. The renaissance and bright future of fibre lasers[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38(9): S681-S693. doi: 10.1088/0953-4075/38/9/016
[3]
Limpert J, Roser F, Klingebiel S, et al. The rising power of fiber lasers and amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 537-545. doi: 10.1109/JSTQE.2007.897182
[4]
王巍. 光纤陀螺在宇航领域中的应用及发展趋势[J]. 导航与控制, 2020, 19(4/5):18-28. (Wang Wei. Application and development tendency of fiber optic gyroscope in space[J]. Navigation and Control, 2020, 19(4/5): 18-28
[5]
杨生胜, 高欣, 冯展祖, 等. 空间激光通信系统光电器件辐射效应研究[J]. 航天器环境工程, 2017, 34(6):571-576. (Yang Shengsheng, Gao Xin, Feng Zhanzu, et al. The effect of radiation on the optoelectronic devices used in space laser communication system[J]. Spacecraft Environment Engineering, 2017, 34(6): 571-576 doi: 10.3969/j.issn.1673-1379.2017.06.001
[6]
冯忠伟, 荣刚, 姜爽, 等. 空间光纤传感测量技术应用研究[J]. 宇航计测技术, 2017, 37(2):5-9. (Feng Zhongwei, Rong Gang, Jiang Shuang, et al. Research on fiber sensing measurement for spacecraft[J]. Journal of Astronautic Metrology and Measurement, 2017, 37(2): 5-9 doi: 10.12060/j.issn.1000-7202.2017.02.02
[7]
郑永超, 赵思思, 李同, 等. 激光空间碎片移除技术发展与展望[J]. 空间碎片研究, 2020, 20(4):1-10. (Zheng Yongchao, Zhao Sisi, Li Tong, et al. Current status and development of laser active debris removal technology[J]. Space Debris Research, 2020, 20(4): 1-10
[8]
陈川, 宋光明, 杨武霖, 等. 空间碎片激光移除: 从概念设计到技术与系统实践[J]. 空间碎片研究, 2020, 20(4):11-20. (Chen Chuan, Song Guangming, Yang Wulin, et al. Laser removal of space debris: from conceptual design to technology and system practice[J]. Space Debris Research, 2020, 20(4): 11-20
[9]
程勇, 郭延龙, 唐璜, 等. 战术激光武器的发展动向[J]. 激光与光电子学进展, 2016, 53:110004. (Cheng Yong, Guo Yanlong, Tang Huang, et al. Development trend of tactical laser weapons[J]. Laser & Optoelectronics Progress, 2016, 53: 110004
[10]
陈伟, 杨海亮, 郭晓强, 等. 空间辐射物理及应用研究现状与挑战[J]. 科学通报, 2017, 62(10):978-989. (Chen Wei, Yang Hailiang, Guo Xiaoqiang, et al. The research status and challenge of space radiation physics and application[J]. Chinese Science Bull, 2017, 62(10): 978-989 doi: 10.1360/N972016-00438
[11]
马晶, 李密, 谭立英, 等. 卫星光通信中空间辐射对EDFA性能的影响分析[J]. 宇航学报, 2009, 30(1):250-254. (Ma Jing, Li Mi, Tan Liying, et al. Analysis of the space radiation effect on EDFA for inter-satellite optical communication[J]. Journal of Astronautics, 2009, 30(1): 250-254 doi: 10.3873/j.issn.1000-1328.2009.00.044
[12]
李密. 卫星光通信中空间辐射环境对掺铒光纤放大器影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2009
Li Mi. Space radiation effect on the erbium-doped fiber amplifiers for inter-satellite optical communications[D]. Harbin: Harbin Institute of Technology, 2009
[13]
Chen Yisha, Xu Haozhen, Xing Yinbin, et al. Impact of gamma-ray radiation-induced photodarkening on mode instability degradation of an ytterbium-doped fiber amplifier[J]. Optics Express, 2018, 26(16): 20430-20441. doi: 10.1364/OE.26.020430
[14]
折胜飞, 梅林, 周振宇, 等. 空间光通信用耐辐照掺铒/铒镱共掺光纤研究进展[J]. 应用科学学报, 2020, 38(4):579-594. (She Shengfei, Mei Lin, Zhou Zhenyu, et al. Progress in radiation-resistant erbium-doped and erbium-ytterbium Co-doped fibers for space optical communication[J]. Journal of Applied Sciences, 2020, 38(4): 579-594 doi: 10.3969/j.issn.0255-8297.2020.04.005
[15]
王博, 曹驰, 邢颍滨, 等. 稀土掺杂光纤辐照性能及抗辐照技术研究现状[J]. 激光与光电子学进展, 2021, 58:1516012. (Wang Bo, Cao Chi, Xing Yingbin, et al. Research status on radiation performance and radiation resistance technology of rare-earth-doped fibers[J]. Laser & Optoelectronics Progress, 2021, 58: 1516012
[16]
Shao Chongyun, Ren Jinjun, Wang Fan, et al. Origin of radiation-induced darkening in Yb3+/Al3+/P5+-doped silica glasses: effect of the P/Al ratio[J]. The Journal of Physical Chemistry B, 2018, 122(10): 2809-2820. doi: 10.1021/acs.jpcb.7b12587
[17]
邵冲云. 掺Yb3+石英玻璃的结构、光谱与耐辐照性能及辐致暗化机理研究[D]. 上海: 中国科学院大学, 2019
Shao Chongyun. Study on structure, spectrum, radiation resistance and radiation-induced darkening mechanism of Yb3+-doped silica glasses[D]. Shanghai: University of Chinese Academy of Sciences, 2019
[18]
Taylor E W, Hulick K E, Battiato J M, et al. Response of germanium-doped fiber Bragg gratings in radiation environments[C]//Proceedings of SPIE 3714, Enabling Photonic Technologies for Aerospace Applications. 1999.
[19]
Fernandez A F, Gusarov A I, Berghmans F, et al. Long-term irradiation of fiber Bragg gratings in a low-dose-rate gamma-neutron radiation field[C]//Proceedings of SPIE 4823, Photonics for Space Environments VIII. 2002: 205-212.
[20]
马晶, 车驰, 于思源, 等. 光纤布拉格光栅γ辐射损伤及其对光谱特性的影响[J]. 物理学报, 2012, 61:064201. (Ma Jing, Che Chi, Yu Siyuan, et al. γ-radiation damage of fiber Bragg grating and its effects on reflected spectrum characteristics[J]. Acta Physica Sinica, 2012, 61: 064201 doi: 10.7498/aps.61.064201
[21]
熊伟晨, 温世喆, 王福娟, 等. 掺锗单模光纤布拉格光栅γ辐照损伤实验[J]. 科学技术与工程, 2018, 18(5):76-80. (Xiong Weichen, Wen Shizhe, Wang Fujuan, et al. Experiment about γ-ray radiation damage of Ge-doped silica single-mode fiber[J]. Science Technology and Engineering, 2018, 18(5): 76-80 doi: 10.3969/j.issn.1671-1815.2018.05.013
[22]
Thompson R J, Tu M, Aveline D C, et al. High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals[J]. Optics Express, 2003, 11(14): 1709-1713. doi: 10.1364/OE.11.001709
[23]
Schreiber T, Wirth C, Schmidt O, et al. Incoherent beam combining of continuous-wave and pulsed Yb-doped fiber amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 354-360. doi: 10.1109/JSTQE.2008.2012267
[24]
Liu Yingfan, Lü Zhiwei, Dong Yongkang, et al. Research on stimulated Brillouin scattering suppression based on multi-frequency phase modulation[J]. Chinese Optics Letters, 2009, 7(1): 29-31. doi: 10.3788/COL20090701.0029
[25]
Supradeepa V R. Stimulated Brillouin scattering thresholds in optical fibers for lasers linewidth broadened with noise[J]. Optics Express, 2013, 21(4): 4677-4687. doi: 10.1364/OE.21.004677
[26]
赵丹. 总剂量效应对铌酸锂电光强度调制器性能影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019
Zhao Dan. Research on total ionizing dose effect on the performance of LiNbO3 intensity modulator[D]. Harbin: Harbin Institute of Technology, 2019
[27]
胡志涛, 何兵, 周军, 等. 高功率光纤激光器热效应的研究进展[J]. 激光与光电子学进展, 2016, 53:080002. (Hu Zhitao, He Bing, Zhou Jun, et al. Research progress in thermal effect of high power fiber lasers[J]. Laser & Optoelectronics Progress, 2016, 53: 080002
[28]
赵楠. 高功率掺镱光纤激光器中光子暗化效应研究[D]. 武汉: 华中科技大学, 2018
Zhao Nan. The study on photo-darkening effect in ytterbium doped high power fiber lasers[D]. Wuhan: Huazhong University of Science & Technology, 2018
[29]
Cao Ruiting, Wang Yibo, Chen Gui, et al. Investigation of photo-darkening-induced thermal load in Yb-doped fiber lasers[J]. IEEE Photonics Technology Letters, 2019, 31(11): 809-812. doi: 10.1109/LPT.2019.2906773
[30]
Otto H J, Modsching N, Jauregui C, et al. Impact of photodarkening on the mode instability threshold[J]. Optics Express, 2015, 23(12): 15265-15277. doi: 10.1364/OE.23.015265
[31]
陈益沙, 廖雷, 李进延. 光纤激光器模式不稳定机理及抑制方法研究进展[J]. 激光与光电子学进展, 2017, 54:080001. (Chen Yisha, Liao Lei, Li Jinyan. Research progress on mode instability mechanism and suppression methods for fiber lasers[J]. Laser & Optoelectronics Progress, 2017, 54: 080001
[32]
Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(27): 13240-13266.
[33]
Hu Man, Yang Yifeng, Zheng Ye, et al. Raman suppression in a kilowatt narrow-band fiber amplifier[J]. Chinese Physics Letters, 2016, 33: 044208. doi: 10.1088/0256-307X/33/4/044208
[34]
Hu Man, Ke Weiwei, Yang Yifeng, et al. Low threshold Raman effect in high power narrowband fiber amplifier[J]. Chinese Optics Letters, 2016, 14: 011901. doi: 10.3788/COL201614.011901
[35]
Zhang Song, Zhang Wanru, Jiang Man, et al. Suppressing stimulated Raman scattering by adopting a composite cavity in a narrow linewidth fiber oscillator[J]. Applied Optics, 2021, 60(20): 5984-5989. doi: 10.1364/AO.430054
[36]
Kovalev V I, Harrison R G. Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers[J]. Optics Letters, 2006, 31(2): 161-163. doi: 10.1364/OL.31.000161
[37]
Liu Anping. Suppressing stimulated Brillouin scattering in fiber amplifiers using nonuniform fiber and temperature gradient[J]. Optics Express, 2007, 15(3): 977-984. doi: 10.1364/OE.15.000977
[38]
Hansryd J, Dross F, Westlund M, et al. Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution[J]. Journal of Lightwave Technology, 2001, 19(11): 1691-1697. doi: 10.1109/50.964069
[39]
Girard S, Laurent A, Pinsard E, et al. Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions[J]. Optics Letters, 2014, 39(9): 2541-2544. doi: 10.1364/OL.39.002541
[40]
Ladaci A, Girard S, Mescia L, et al. Optimized radiation-hardened erbium doped fiber amplifiers for long space missions[J]. Journal of Applied Physics, 2017, 121: 163104. doi: 10.1063/1.4981532
[41]
Girard S, Morana A, Ladaci A, et al. Recent advances in radiation-hardened fiber-based technologies for space applications[J]. Journal of Optics, 2018, 20: 093001. doi: 10.1088/2040-8986/aad271
[42]
DiGiovanni D J, MacChesney J B, Kometani T Y. Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join[J]. Journal of Non-Crystalline Solids, 1989, 113(1): 58-64. doi: 10.1016/0022-3093(89)90318-9
[43]
Deschamps T, Vezin H, Gonnet C, et al. Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber[J]. Optics Express, 2013, 21(7): 8382-8392. doi: 10.1364/OE.21.008382
[44]
León M, Lancry M, Ollier N, et al. Ge- and Al-related point defects generated by gamma irradiation in nanostructured erbium-doped optical fiber preforms[J]. Journal of Materials Science, 2016, 51(22): 10245-10261. doi: 10.1007/s10853-016-0253-5
[45]
Likhachev M E, Bubnov M M, Zotov K V, et al. Radiation resistance of Er-doped silica fibers: effect of host glass composition[J]. Journal of Lightwave Technology, 2013, 31(5): 749-755. doi: 10.1109/JLT.2012.2233196
[46]
Kobayashi Y, Sekiya E H, Saito K, et al. Effects of Ge co-doping on P-related radiation-induced absorption in Er/Yb-doped optical fibers for space applications[J]. Journal of Lightwave Technology, 2018, 36(13): 2723-2729. doi: 10.1109/JLT.2018.2819193
[47]
Wang Qian, Tian Cuiping, Wang Yingying, et al. Review of radiation hardening techniques for EDFAs in space environment[C]//Proceedings of SPIE, 9521 Selected Papers from Conferences of the Photoelectronic Technology Committee of the Chinese Society of Astronautics 2014, Part I. 2015: 95211D.
[48]
Mady F, Guttilla A, Benabdesselam M, et al. Systematic investigation of composition effects on the radiation-induced attenuation mechanisms of aluminosilicate, Yb-doped silicate, Yb- and Yb, Ce-doped aluminosilicate fiber preforms[Invited][J]. Optical Materials Express, 2019, 9(6): 2466-2489. doi: 10.1364/OME.9.002466
[49]
Jetschke S, Unger S, SchwuchowA, et al. Role of Ce in Yb/Al laser fibers: prevention of photodarkening and thermal effects[J]. Optics Express, 2016, 24(12): 13009-13022. doi: 10.1364/OE.24.013009
[50]
Engholm M, Jelger P, Laurell F, et al. Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping[J]. Optics Letters, 2009, 34(8): 1285-1287. doi: 10.1364/OL.34.001285
[51]
She Shengfei, Liu Bo, Chang Chang, et al. Yb/Ce codoped aluminosilicate fiber with high laser stability for multi-kW level laser[J]. Journal of Lightwave Technology, 2020, 38(24): 6924-6931. doi: 10.1109/JLT.2020.3019740
[52]
Zhao Nan, Liu Yehui, Li Miao, et al. Mitigation of photodarkening effect in Yb-doped fiber through Na+ ions doping[J]. Optics Express, 2017, 25(15): 18191-18196. doi: 10.1364/OE.25.018191
[53]
Griscom D L. Radiation hardening of pure-silica-core optical fibers by ultra-high-dose γ-ray pre-irradiation[J]. Journal of Applied Physics, 1995, 77(10): 5008-5013. doi: 10.1063/1.359310
[54]
李荣玉, 殷宗敏, 王建华, 等. 石英光纤抗辐照加固的研究[J]. 上海交通大学学报, 2000, 34(2):215-217. (Li Rongyu, Yin Zongmin, Wang Jianhua, et al. Research on anti-radiation of silica fiber[J]. Journal of Shanghai Jiaotong University, 2000, 34(2): 215-217 doi: 10.3321/j.issn:1006-2467.2000.02.015
[55]
Stone J. Interactions of hydrogen and deuterium with silica optical fibers: a review[J]. Journal of Lightwave Technology, 1987, 5(5): 712-733. doi: 10.1109/JLT.1987.1075562
[56]
Girard S, Vivona M, Laurent A, et al. Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application[J]. Optics Express, 2012, 20(8): 8457-8465. doi: 10.1364/OE.20.008457
[57]
Girard S, De Michele V, Alessi A, et al. Transient and steady-state radiation response of phosphosilicate optical fibers: influence of H2 loading[J]. IEEE Transactions on Nuclear Science, 2020, 67(1): 289-295. doi: 10.1109/TNS.2019.2947583
[58]
Sporea D, Sporea A, Oproiu C. Effects of hydrogen loading on optical attenuation of gamma-irradiated UV fibers[J]. Journal of Nuclear Materials, 2012, 423(1/3): 142-148.
[59]
Xing Yingbin, Liu Yinzi, Zhao Nan, et al. Radical passive bleaching of Tm-doped silica fiber with deuterium[J]. Optics Letters, 2018, 43(5): 1075-1078. doi: 10.1364/OL.43.001075
[60]
Liu Yinzi, Xing Yingbin, Lin Xianfeng, et al. Bleaching of photodarkening in Tm-doped silica fiber with deuterium loading[J]. Optics Letters, 2020, 45(9): 2534-2537. doi: 10.1364/OL.391069
[61]
Yoo S, Basu C, Boyland A J, et al. Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation[J]. Optics Letters, 2007, 32(12): 1626-1628. doi: 10.1364/OL.32.001626
[62]
Di Francesca D, Agnello S, Girard S, et al. Influence of O2-loading pretreatment on the radiation response of pure and fluorine-doped silica-based optical fibers[J]. IEEE Transactions on Nuclear Science, 2014, 61(6): 3302-3308. doi: 10.1109/TNS.2014.2357994
[63]
Di Francesca D, Agnello S, Girard S, et al. O2-loading treatment of Ge-doped silica fibers: a radiation hardening process[J]. Journal of Lightwave Technology, 2016, 34(9): 2311-2316. doi: 10.1109/JLT.2016.2533670
[64]
Söderlund M J, PonsodaJ J M I, Koplow J P, et al. Thermal bleaching of photodarkening in ytterbium-doped fibers[C]//Proceedings of SPIE 7580, Fiber Lasers VII: Technology, Systems, and Applications. 2010: 75800B.
[65]
Friebele E J, Gingerich M E. Photobleaching effects in optical fiber waveguides[J]. Applied Optics, 1981, 20(19): 3448-3452. doi: 10.1364/AO.20.003448
[66]
Piccoli R, Robin T, Méchin D, et al. Effective mitigation of photodarkening in Yb-doped lasers based on Al-silicate using UV/visible light[C]//Proceedings of SPIE 8961, Fiber Lasers XI: Technology, Systems, and Applications. 2014: 896121.
[67]
Chávez A D G, Kir’yanov A V, Barmenkov Y O, et al. Reversible photo-darkening and resonant photo-bleaching of ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation[J]. Laser Physics Letters, 2007, 4(10): 734-739. doi: 10.1002/lapl.200710053
[68]
Gebavi H, Taccheo S, Tregoat D, et al. Photobleaching of photodarkening in ytterbium doped aluminosilicate fibers with 633nm irradiation[J]. Optical Materials Express, 2012, 2(9): 1286-1291. doi: 10.1364/OME.2.001286
[69]
Piccoli R, Robin T, Brand T, et al. Effective photodarkening suppression in Yb-doped fiber lasers by visible light injection[J]. Optics Express, 2014, 22(7): 7638-7643. doi: 10.1364/OE.22.007638
[70]
Peretti R, Jurdyc A M, Jacquier B, et al. How do traces of thulium explain photodarkening in Yb doped fibers?[J]. Optics Express, 2010, 18(19): 20455-20460. doi: 10.1364/OE.18.020455
[71]
Mescia L, Girard S, Bia P, et al. Optimization of the design of high power Er3+/Yb3+-codoped fiber amplifiers for space missions by means of particle swarm approach[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20: 3100108.
[72]
王巍, 王学锋, 李晶, 等. 高精度光纤陀螺用掺铒光纤光源辐照性能试验[J]. 红外与激光工程, 2012, 41(7):1826-1830. (Wang Wei, Wang Xuefeng, Li Jing, et al. Experiment on performance of erbium-doped fiber source for high performance fiber-optic gyroscope in a space irradiation environment[J]. Infrared and Laser Engineering, 2012, 41(7): 1826-1830 doi: 10.3969/j.issn.1007-2276.2012.07.026
[73]
谌鸿伟, 陶蒙蒙, 赵海川, 等. γ射线作用下光纤激光器的功率特性及热效应分析[J]. 中国激光, 2020, 47:0401004. (Chen Hongwei, Tao Mengmeng, Zhao Haichuan, et al. Power characteristics and thermal effects of the gamma-ray radiated fiber lasers[J]. Chinese Journal of Lasers, 2020, 47: 0401004 doi: 10.3788/CJL202047.0401004
[74]
Girard S, Ouerdane Y, Origlio G, et al. Radiation effects on silica-based preforms and optical fibers—I: experimental study with canonical samples[J]. IEEE Transactions on Nuclear Science, 2008, 55(6): 3473-3482.
[75]
Girard S, Richard N, Ouerdane Y, et al. Radiation effects on silica-based preforms and optical fibers-II: coupling ab initio simulations and experiments[J]. IEEE Transactionson Nuclear Science, 2008, 55(6): 3508-3514. doi: 10.1109/TNS.2008.2007232
[76]
Girard S, MesciaL, Vivona M, et al. Design of radiation-hardened rare-earth doped amplifiers through a coupled experiment/simulation approach[J]. Journal of Lightwave Technology, 2013, 31(8): 1247-1254. doi: 10.1109/JLT.2013.2245304
[77]
Fox B P, Schneider Z V, Simmons-Potter K, et al. Gamma radiation effects in Yb-doped optical fiber[C]//Proceedings of SPIE 6453, Fiber Lasers IV: Technology, Systems, and Applications. 2007: 645328.
[78]
Fox B P, Simmons-Potter K, Thomes Jr W J, et al. Gamma-radiation-induced photodarkening in unpumped optical fibers doped with rare-earth constituents[J]. IEEE Transactions on Nuclear Science, 2010, 57(3): 1618-1625. doi: 10.1109/TNS.2010.2043854
[79]
Fox B P, Simmons-Potter K, KlinerD A V, et al. Effect of low-earth orbit space on radiation-induced absorption in rare-earth-doped optical fibers[J]. Journal of Non-Crystalline Solids, 2013, 378: 79-88. doi: 10.1016/j.jnoncrysol.2013.06.009
[80]
Singleton B, Petrosky J, Pochet M, et al. Gamma-radiation-induced degradation of actively pumped single-mode ytterbium-doped optical fibers[C]. Proceedings of SPIE 8982, Optical Components and Materials XI. 2014: 89820S.
[81]
Duchez J B, Mady F, Mebrouk Y, et al. Interplay between photo- and radiation-induced darkening in ytterbium-doped fibers[J]. Optics Letters, 2014, 39(20): 5969-5972. doi: 10.1364/OL.39.005969
[82]
Ladaci A, Girard S, Mescia L, et al. Radiation hardened high-power Er3+/Yb3+-codoped fiber amplifiers for free-space optical communications[J]. Optics Letters, 2018, 43(13): 3049-3052. doi: 10.1364/OL.43.003049
[83]
Campanella C, MesciaL, BiaP, et al. Theoretical investigation of thermal effects in high power Er3+/Yb3+-codoped double-clad fiber amplifiers for space applications[J]. Physics Status Solidi (A), 2019, 216: 1800582. doi: 10.1002/pssa.201800582
[84]
池俊杰, 姜诗琦, 张琳, 等. 光纤激光器辐照性能实验研究[J]. 激光与光电子学进展, 2018, 55:061406. (Chi Junjie, Jiang Shiqi, Zhang Lin, et al. Experimental study on radiation performance of fiber lasers[J]. Laser & Optoelectronics Progress, 2018, 55: 061406
[85]
Xie Fenghou, Shao Chongyun, Wang Meng, et al. Research on photo-radiation darkening performance of ytterbium-doped silica fibers for space applications[J]. Journal of Lightwave Technology, 2019, 37(4): 1091-1097. doi: 10.1109/JLT.2018.2886253
[86]
邵冲云, 于春雷, 胡丽丽. 面向空间应用耐辐照有源光纤研究进展[J]. 中国激光, 2020, 47:0500014. (Shao Chongyun, Yu Chunlei, Hu Lili. Radiation-resistant active fibersfor space applications[J]. Chinese Journal of Lasers, 2020, 47: 0500014 doi: 10.3788/CJL202047.0500014
[87]
黄宏琪, 赵楠, 陈瑰, 等. γ射线辐照对掺Yb光纤材料性能的影响[J]. 物理学报, 2014, 63:200201. (Huang Hongqi, Zhao Nan, Chen Gui, et al. Effects of γ-radiation on Yb-doped fiber[J]. Acta Physica Sinica, 2014, 63: 200201 doi: 10.7498/aps.63.200201
[88]
Zhao Nan, Xing Yingbin, Li Jiaming, et al. 793 nm pump induced photo-bleaching of photo-darkened Yb3+-doped fibers[J]. Optics Express, 2015, 23(19): 25272-25278. doi: 10.1364/OE.23.025272
[89]
Xing Yingbin, Zhao Nan, Liao Lei, et al. Active radiation hardening of Tm-doped silica fiber based on pump bleaching[J]. Optics Express, 2015, 23(19): 24236-24245. doi: 10.1364/OE.23.024236
[90]
Xing Yingbin, Huang Hongqi, Zhao Nan, et al. Pump bleaching of Tm-doped fiber with 793 nm pump source[J]. Optics Letters, 2015, 40(5): 681-684. doi: 10.1364/OL.40.000681
[91]
Cao Ruiting, Lin Xianfeng, Chen Yisha, et al. 532 nm pump induced photo-darkening inhibition and photo-bleaching in high power Yb-doped fiber amplifiers[J]. Optics Express, 2019, 27(19): 26523-26531. doi: 10.1364/OE.27.026523
[92]
张汉伟, 王小林, 唐峰, 等. γ射线导致的光子暗化对掺镱光纤激光器效率的影响[J]. 激光与光电子学进展, 2020, 57:011406. (Zhang Hanwei, Wang Xiaolin, Tang Feng, et al. Influence of γ ray induced photo darkening on efficiency of ytterbium-doped fiber laser[J]. Laser& Optoelectronics Progress, 2020, 57: 011406
[93]
谌鸿伟, 陶蒙蒙, 赵海川, 等. γ射线辐照增益光纤影响激光器功率特性实验[J]. 中国激光, 2019, 46:1201005. (Chen Hongwei, Tao Mengmeng, Zhao Haichuan, et al. Experimental investigations on laser power characteristics influenced by gamma-ray irradiated gain fiber[J]. Chinese Journal of Lasers, 2019, 46: 1201005 doi: 10.3788/CJL201946.1201005
[94]
Tao Mengmeng, Chen Hongwei, Feng Guobin, et al. Thermal modeling of high-power Yb-doped fiber lasers with irradiated active fibers[J]. Optics Express, 2020, 28(7): 10104-10123. doi: 10.1364/OE.384980
[95]
Wang Yuying, Gao Cong, Peng Kun, et al. Laser performances of Yb-doped aluminophosphosilicate fiber under γ-radiation[C]//Proceedings of the Conference on Lasers and Electro-Optics/Pacific Rim 2018. 2018.
[96]
李奋飞, 周晓燕, 张魁宝, 等. 伽马辐照对掺镱光纤材料特性影响的研究[J]. 强激光与粒子束, 2020, 32:081003. (Li Fenfei, Zhou Xiaoyan, Zhang Kuibao, et al. Effect of gamma irradiation on characteristics of Yb-doped fiber materials[J]. High Power Laser and Particle Beams, 2020, 32: 081003